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A new colorimetric anion sensor 1 was synthesized for the chiral recognition, which accommodates a
combination of three different functional groups such as chromophore (azophenol dye), binding site
(thiourea group), and chiral barrier (glucopyranosyl group). The colorimetric changes of host 1 with
various a-amino carboxylates as well as chiral carboxylates such as naproxen were examined.

� 2008 Elsevier Ltd. All rights reserved.
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Scheme 1. Synthesis of host 1 and structure of naproxen.
The anion-sensing based on molecular recognition has attracted
considerable attention in recent years.1 Even though great effort
has been devoted to chiral anion recognition,2 colorimetric chemo-
sensors for chiral anions are relatively rare.3 Herein, we report a
new colorimetric sensor for chiral anion recognition, which accom-
modates a combination of three different functional groups, such
as chromophore (azophenol dye), binding site (thiourea group),
and chiral barrier (glucopyranosyl group). While 2,3,4,6-tetra-O-
acetyl-b-D-glucopyranosyl isothiocyanate has been utilized as a
successful chiral derivatizing agent for the optical resolution of
racemic amino compounds4 or for the recognition of simple an-
ions5 and dicarboxylates,6 there has been only one example of sen-
sor bearing this chiral barrier for the chiral recognition of amino
acid derivatives.7

In the present study, the colorimetric changes of host 1 with
various a-amino carboxylates as well as chiral carboxylates were
examined. As high as 3.60 was observed for L/D selectivity of amino
acid derivatives. Host 1 also displayed a moderate selectivity for
the (S)-enantiomer of naproxen ([2-(6-methoxynaphth-2-yl)propi-
onic acid]), a nonsteriodal anti-inflammatory drug (NSAID) over
(R)-isomer. It is known that the pharmacological activity of (S)-iso-
mer is greater compared to that of (R)-isomer. Even though several
chiral synthetic receptors or chiral stationary phase have been
reported so far,9,10 the recognition of enantiomers of naproxen still
remains a challenging task. Indeed, there has been only couple of
examples so far, which were utilized as colorimetric or fluorescent
receptors for the chiral recognition of naproxen.9

The synthetic scheme for host 1 was explained in Scheme 1. The
intermediate 2 was synthesized using a reported procedure.11

Removal of the Boc protecting group followed by the treatment
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of the resulting ammonium salt with 2,3,4,6-tetra-O-acetyl-b-D-
glucopyranosyl isothiocyanate 3 and triethylamine yielded host
18 in 35% yield. The 1H and 13C NMR spectra of 1 are explained
in the Supplementary data.

The UV absorption changes of host 1 were examined for simple
anionic species such as CH3CO�2 , H2PO�4 , F�, Cl�, Br�, and I�. Host 1
(40 lM) displayed a large bathochromic shift (�145 nm) with
CH3CO�2 , F�, and H2PO�4 (40 lM) in acetonitrile (Fig. 1). This batho-
chromic shift can be attributed to the deprotonation of the azophe-
nol, which can induce a photoinduced charge transfer (PTC).11

Similar bathochromic shifts with anions are also reported for
azophenol based receptors12 and other chromophores.13 Figure 2
explains the colorimetric changes of host 1 with these anions.
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Figure 2. The color changes of compound 1 (40 lM) with various anions (1 equiv)
in acetonitrile.

Table 1
The association constants (M�1) of hosts 1 with t-Boc-amino acid derivatives in
acetonitrile

Guest KD (M�1) KD/KL KL (M�1)

Phenylglycine 3.80 � 104 1.16 3.27 � 104

Leucine 2.98 � 104 2.22 1.34 � 104

Valine 1.64 � 104 1.43 1.15 � 104

Threonine 6.89 � 104 3.13 2.20 � 104

Alanine 2.28 � 103 3.60 6.33 � 102

Table 2
The association constants (M�1) of hosts 1 with DNB-amino acid derivatives in
acetonitrile

Guest KD (M�1) KD/KL KL (M�1)

Phenylglycine 6.48 � 104 1.10 5.90 � 104

Leucine 9.95 � 104 2.17 4.59 � 104

Valine 2.65 � 104 1.42 1.86 � 104

Threonine 5.15 � 104 1.17 4.39 � 104

Alanine 4.35 � 103 2.55 1.70 � 103

Figure 1. The UV absorption changes of compound 1 (40 lM) with various anions
(1 equiv) in acetonitrile.
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Compounds 1 were then examined for chiral recognitions with
various amino acid derivatives. Tetrabutyl ammonium salts of
Figure 3. UV titrations of compound 1 (20 lM) with L-t-Boc-threonine (a) and D-t-
Boc-threonine in acetonitrile.
t-Boc-amino acids and DNB(dinitrobenzyl)-amino acids, such as
alanine (Ala), valine (Val), threonine (Thr), leucine (Leu) and phen-
ylglycine (Phg), were used for the binding study. Figure 3 explains
the UV titrations of chemosensor 1 (20 lM) with L-t-Boc-threonine
(Fig. 3a) and D-t-Boc-threonine (Fig. 3b) in acetonitrile. According
to the linear Benesi–Hilderand expression, the measured absorp-
tion [1/(A � A0)] at 523 nm varied as a function of amino acids in
linear relationship (R ffi 0.9995), indicating the �1:1 stoichiometry
between amino acids and hosts (Supplementary data). The 1:1 stoi-
chiometry was further confirmed by Job plot (Supplementary data).
The association constants of 1 with t-Boc amino acids and DNB-
amino acids are explained in Tables 1 and 2. As shown in Tables
1 and 2, in general, host 1 displayed a larger Ka value with L-amino
acid derivatives than that with D-isomers. For example, the associ-
ation constants of 1 with L- and D-t-Boc threonine were calculated
as 68,900 and 22,000 M�1, respectively, and KL/KD was found to be
3.13 (Table 1). t-Boc or DNB group was introduced due to the
solubility problem. However, these t-Boc or DNB derivatives dis-
played a higher L/D selectivity than deprotected amino acids, which
means that large t-Boc or DNB group is needed to interact with chi-
ral barrier (glucopyranosyl unit). 1H NMR experiments of 1 (2 mM)
with D-t-Boc valine (1 equiv) in DMSO-d6 displayed a distinct
downfield-shift of guest amide (NH) hydrogen from 5.73 to
6.81 ppm (Supplementary data), which can be attributed to that
an amide hydrogen of guest can make a H-bonding with phenolic
oxygen of host. In addition, a small upfield-shift (0.2 ppm) of
isopropyl group of the guest was observed.

Host 1 was further examined with chiral carboxylates such as
naproxen, 2-phenylpropionic acid, and 2-hydroxybutyric acid.
The association constants were determined by UV–visible titration
in acetonitrile and analyzed by the Benesi–Hilderand expression
(Supplementary data). As shown in Table 3, the chiral carboxylate
anions showed the larger association constants for (S)-enantiomers
than those for (R)-enantiomers. 2-Phenylpropionic acid displayed
the KS/KR as high as 2.95. Host 1 also displayed a moderate selectiv-
ity for the (S)-enantiomer of naproxen, a nonsteriodal anti-inflam-
Table 3
The association constants (M�1) of host 1 with chiral carboxylates in acetonitrile

Chiral carboxylate KS (M�1) KS/KR KR (M�1)

Naproxen 3.59 � 103 1.86 1.93 � 103

2-Phenylpropionic acid 8.25 � 103 2.95 2.79 � 103

2-Hydroxybutyric acid 2.21 � 104 1.32 1.67 � 104



Figure 4. The partial 1H NMR (250 MHz) spectra in DMSO-d6; (a) 1 (2 mM) upon the addition of (S)-naproxen (0.6 equiv), (b) 1 only (2 mM), (c) (S)-naproxen only.
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matory drug (NSAID) over (R)-isomer. It is known that the pharma-
cological activity of (S)-isomer is greater compared to that of
(R)-isomer.

To examine the chemical shift changes of host 1 as well as
naproxen, 1H NMR experiments were performed in DMSO-d6

(Fig. 4). As shown in Figure 4, OH peak in the host moved from
10.1 to 11.1 ppm and methyl group in the guest moved from
1.30 to 1.43 ppm upon the addition of (S)-naproxen (0.6 equiv).

In conclusion, we report a new colorimetric sensor for chiral
anion recognition such as a-amino carboxylates as well as chiral
carboxylates such as naproxen. Our host 1 accommodates a combi-
nation of three different functional groups, such as chromophore
(azophenol dye), binding site (thiourea group), and chiral barrier
(glucopyranosyl group). As high as 3.60 was observed for the D/L

selectivity of host 1, which can be attributed to the glucopyranosyl
unit (chiral barrier) of the host.
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